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1 Introduction

Figure 1: Left: symmetry in the transition of a letter alignment task. When the state
is rotated, the learned action should be rotated accordingly. Our method embeds
such symmetries in the policy to achieve learning within only tens to hundreds of
data, significantly fewer than prior works require. Right: selection of my prior
works.

As a researcher in Machine Learn-
ing and Robotics, my ultimate goal
is to build intelligent robotic sys-
tems that can generalize across di-
verse tasks and environments with
minimal training, thereby enabling
their deployment in complex real-
world scenarios. However, current
machine learning models are gen-
erally not sample-efficient, requir-
ing vast amounts of training data
before they can be deployed. This
is often too expensive for many
problems, especially in robotics
where collecting real-robot data re-
quires a large amount of time run-
ning the robot. Consequently, im-
proving sample efficiency and gen-
eralizability—i.e., enabling policy
learning with a minimal number of
samples, and allowing the model to
generalize to unseen scenarios—is
crucial for the widespread adoption
of real-world robotics applications.
My research leverages the fundamental geometric symmetries in the environment as an inductive bias to improve
policy learning in robotics. The key idea is to use the mathematical study of symmetry to design equivariant neural
network architectures whose layers are constrained to be symmetric, allowing policies to automatically generalize across
symmetrical transformations. As shown in Figure 1 (left), the learned policy can generalize to a rotated state by rotating the
action accordingly. This approach results in sample efficiency that is orders of magnitude greater than previous methods.
While similar ideas have been explored in other domains, our work is the first to apply equivariant learning in robotics.
My work makes several contributions to design equivariant policies in robot learning. First, we introduce group-invariant
MDPs [1], the theoretical grounding of equivariant policy learning. Second, we develop equivariant reinforcement learn-
ing algorithms under different problem formulations [2, 1, 3, 4] (Figure 1 right top). We have also investigated equivariant
learning in behavior cloning [5], grasping [6, 7, 8, 9], and pick-place [10, 11, 12, 13] in various settings, and achieve
the state-of-the-art performance. Third, we demonstrate theoretically and empirically that our models are robust to the
degradation of model assumptions: they continue to work well even with symmetry-breaking factors like camera angles,
occlusions, etc [14, 15] (Figure 1 right middle). Moreover, my recent paper [16] combines the strength of equivariant
learning with diffusion models to learn sample-efficient policies in SE(3) long-horizon control (Figure 1 right bottom). In
the remainder of this document, I will first describe my selected prior works in Section 2, then outline my proposed future
works in Section 3.

2 Prior Research
2.1 Theory of Equivariant Policy Learning

Our first work in this area theoretically characterizes the problem settings where equivariant learning can be applied.
Consider a group G that represents a space of transformations (e.g., G = SO(2) for all planar rotations), we define
G-invariant Markov decision processes (MDPs) [1] as a class of MDPs whose reward and transition functions remain
unchanged under these transformations. Formally, ∀g ∈ G, R(s, a) = R(gs, ga), T (s, a, s′) = T (gs, ga, gs′). We prove
that the optimal solution of a G-invariant MDP is inherently G-equivariant:
Theorem 2.1 (Wang et al. [1]). For any G-invariant MDP. Its optimal Q-function is G-invariant, Q∗(s, a) = Q∗(gs, ga);
its optimal policy is G-equivariant, π∗(gs) = gπ∗(s), for any g ∈ G.
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A function f is equivariant with respect to G if it commutes with all transformations g ∈ G, f(gx) = gf(x). This is
a mathematical way of expressing that f is symmetric with respect to G: if we evaluate f for differently transformed
versions of the same input, we should obtain transformed versions of the same output. Theorem 2.1 establishes the
theoretical foundation of equivariant policy learning: whenever our problem can be formulated as a G-invariant MDP, we
can use equivariant networks, a class of networks that guarantees equivariance through weight sharing [17, 18], to model
the value or policy functions to improve sample efficiency and generalization.

2.2 Equivariant SAC

(a) Drawer Opening (Sim) (b) Grasping (Real) (c) Block in Bowl (Real)

Figure 2: Comparison of Equivariant SAC (blue) with baselines.

In our ICLR 2022 spotlight paper [1], we ap-
ply Theorem 2.1 to develop Equivariant Soft
Actor-Critic (SAC), a novel reinforcement learn-
ing model for robotic manipulation. This model
demonstrates significantly improved sample effi-
ciency compared to baseline methods. In partic-
ular, for g ∈ SO(2), we model the policy net-
work π : S → A as an equivariant network
that satisfies the equivariant constraint π(gs) =
gπ(s), and model the critic network q : S × A → R as an invariant network with the invariant constraint q(gs, ga) =
q(s, a). In the subsequent CoRL 2022 work [3], we use this method to learn real-world manipulation policies from scratch
within one to two hours, a drastic improvement over previous methods that required hundreds of hours. Figure 2 shows
the comparison between Equivariant SAC and the baselines in both simulation (a) and the real world (bc), where our
method dramatically outperforms the baselines. My works established the foundation of equivariant robot learning and
equivariant reinforcement learning, inspiring many follow-up works along this direction, e.g., [19, 20, 21, 22, 23].

2.3 Equivariant Learning with Extrinsic Symmetry

(a) Top-Down Obs (b) Side-View Obs

Figure 3: (a) Ideal top-down im-
age (b) Side-view image where the
transformation of the image is out-
of-distribution.

Equivariant models usually rely on structured observations, such as the top-down
view in Figure 3a, where the state transformation can be directly derived from the
image transformation. However, in many real-world scenarios, these ideal observa-
tions are unavailable due to factors like occlusion or varying camera angles (e.g.,
Figure 3b), leading to a mismatch between image transformation and state transfor-
mation. My ICLR 2023 spotlight paper [14] demonstrates that equivariant models
are robust to these mismatches and can still provide a significant performance boost
(we call it extrinsic equivariance). This finding significantly broadens the appli-
cability of equivariant learning by eliminating the need for structured input. We
further categorize the relationship between the problem symmetry and the model
symmetry as correct, incorrect, and extrinsic, where our follow-up NeurIPS 2023
paper [15] proposes a general theory about them with the theoretical lower bounds
of equivariant models under symmetry mismatch.

2.4 Equivariant Diffusion Policy

Figure 4: Our method can learn
a long-horizon bagel baking task
with 58 demonstrations.

Since robotic tasks often require multi-modal policies for learning from diverse
human demonstrations, my most recent CoRL 2024 Best Paper Award Finalist
work [16] explores the combination of equivariant policy learning with diffusion
models to capture the multi-modality and thereby tackle complex long-horizon
tasks. We show that the policy denoising process is equivariant when the policy itself
is equivariant, and further provide a thorough demonstration of leveraging SO(2)-
equivariance in the full 6-DoF SE(3) control. We propose Equivariant Diffusion
Policy, and demonstrate in simulation that it outperforms three state-of-the-art im-
itation learning baselines [24, 25, 26] by 22%. In the real world, our method can
learn policies within only tens of demonstration data. For example, our method suc-
cessfully solves a long-horizon bagel baking task (Figure 4) with 80% success rate
using only 58 demonstrations, whereas the baseline only reaches a 10% success rate.

3 Proposed Work: Toward Generalizable and Efficient Robot Learning Systems
My long-term vision is to develop robotic systems that generalize across diverse tasks and environments with minimal
training, enabling their deployment in complex real-world scenarios. To achieve this, I believe the sample efficiency and
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generalizability offered by equivariant learning are essential. In this section, I outline key components for realizing this
vision, addressing both practical challenges and promising extensions of equivariant learning.

3.1 General Robotic Equivariant Learning Framework

The first step toward this goal is to design a flexible and adaptive equivariant learning framework tailored specifically for
robotics. This will simplify the integration of equivariant learning with other methods, broadening its applicability across
the field. As a starting point, I propose to extend equivariant learning to a broader range of symmetries and robotic tasks.
Exploiting Local Symmetries with Adaptive Equivariant Attention: While my previous work has focused primarily on
global symmetries, robotic tasks often involve local symmetries that need to be considered for more fine-grained ma-
nipulation. To achieve this, I propose integrating equivariant learning with an object-centric approach to reason about the
object-level local symmetries. First, to facilitate object-centric reasoning, a region proposal or segmentation network will
identify objects in the scene. An equivariant network will process each individual object and generate an equivariant object
descriptor that encodes the local symmetry of each object. These object descriptors will be processed by an equivariant
graph neural network or Transformer, which will consider both local and global symmetries to output an action.
Extending Equivariant Learning to other Robotic Platforms: Building upon my foundational work in robotic manipula-
tion, I plan to extend equivariant learning to other domains, such as mobile manipulation, navigation, and locomotion.
This expansion will validate the robustness of equivariant learning across a wider range of robotic tasks. The key re-
search question is identifying the mathematical definition of symmetry in those systems, thereby implementing it with
appropriate equivariant neural networks.

3.2 Resolving Symmetry-Breaking in Robotics

Figure 5: The reachability map
of a robot arm. Color represents
increasing rotational reachability:
Red, Yellow, Green, SkyBlue and
Blue. Image adopted from [27].

One immediate challenge in broadly applying equivariant policies is the symmetry-
breaking caused by the physical constraints in robotics. Equivariant policies generally
assume that the environment’s dynamics are fully symmetric across a group (e.g.,
SE(3)). However, this assumption could be violated by factors like fixed obstacles
or kinematic constraints. As is shown in my prior work [15], this type of symmetry-
breaking will create a theoretical upper bound on equivariant models’ performance,
posing a fundamental problem on the scalability of equivariant policy learning.
Handling Kinematic Constraint Symmetry Breaking: As shown in Figure 5, the robot
arm can only reach a subset of SE(3) poses. As a result, an equivariant model might
generate kinematically infeasible actions by generalizing from feasible actions in a
symmetric manner. To address this issue, I propose using relaxed or approximate
equivariant models [28, 29], which have been developed in our lab, to learn policies
that are aware of kinematic constraints. These relaxed equivariant models are capa-
ble of capturing symmetry-breaking conditions in the dataset and adaptively relaxing
the equivariant constraint to account for kinematic feasibility. Alternatively, I will
explore pre-training or pre-computing a kinematic feasibility map that can be used to mask out infeasible actions from an
equivariant policy. This approach will enhance the feasibility and practicality of using equivariant policies in real-world
robotic applications, clearing the obstacles for the broad adoption of equivariant learning in robotics.

3.3 Bridging Equivariant Learning and Foundation Models

The ultimate goal of a general-purpose robotic system is being able to learn new tasks quickly while maintaining the
knowledge of solving the previously learned tasks. This requires not only geometric-level generalization, as addressed
in my previous work, but also task-level generalization. With the growing prominence of large-scale models, I believe
this could be achieved by creating synergy between these large models and smaller, more efficient equivariant models,
potentially enabling fast adaptation and generalization in new domains through the use of equivariant learning.
Learning General Policies via Equivariant Skill Composition: As the first step in this direction, I propose combining equiv-
ariant skills with a high-level planner to enable faster adaptation across different tasks. In particular, the low-level skills
in robotic manipulation (e.g., picking, placing, pushing, etc.) often observe the most geometric symmetries. Although a
certain high-level task might not fully leverage the symmetry due to the fixed poses of objects, an equivariant low-level
skill could significantly ease skill generalization. For example, an equivariant skill learned for opening a drawer on the left
could easily generalize to a task requiring the opening of a drawer on the right. Consequently, I propose to use my prior
works to learn low-level skills, and compose them with a high-level planner using foundation models. In this approach,
the symmetry in the low-level skills could dramatically improve cross-task generalization.
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